Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667359

RESUMO

Despite the importance of pollinators to ecosystem functioning and human food production, comprehensive pollinator monitoring data are still lacking across most regions of the world. Policy-makers have recently prioritised the development of large-scale monitoring programmes for pollinators to better understand how populations respond to land use, environmental change and restoration measures in the long term. Designing such a monitoring programme is challenging, partly because it requires both ecological knowledge and advanced knowledge in sampling design. This study aims to develop a conceptual framework to facilitate the spatial sampling design of large-scale surveillance monitoring. The system is designed to detect changes in pollinator species abundances and richness, focusing on temperate agroecosystems. The sampling design needs to be scientifically robust to address questions of agri-environmental policy at the scales of interest. To this end, we followed a six-step procedure as follows: (1) defining the spatial sampling units, (2) defining and delimiting the monitoring area, (3) deciding on the general sampling strategy, (4) determining the sample size, (5) specifying the sampling units per sampling interval, and (6) specifying the pollinator survey plots within each sampling unit. As a case study, we apply this framework to the "Wild bee monitoring in agricultural landscapes of Germany" programme. We suggest this six-step procedure as a conceptual guideline for the spatial sampling design of future large-scale pollinator monitoring initiatives.

2.
Cell Mol Life Sci ; 76(4): 637-651, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30349993

RESUMO

Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.


Assuntos
Encéfalo/metabolismo , Genes Precoces/genética , Genes de Insetos/genética , Insetos/genética , Plasticidade Neuronal/genética , Comportamento Social , Animais , Abelhas/genética , Abelhas/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Expressão Gênica , Insetos/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia
3.
PLoS One ; 11(10): e0164386, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27783640

RESUMO

Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-naïve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.


Assuntos
Abelhas/fisiologia , Cor , Aprendizagem por Discriminação/fisiologia , Corpos Pedunculados/metabolismo , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Comportamento de Escolha/fisiologia , Microscopia Confocal , Corpos Pedunculados/anatomia & histologia , Corpos Pedunculados/química , Neurópilo/fisiologia , Estimulação Luminosa
4.
PLoS One ; 10(7): e0134248, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230643

RESUMO

More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects' antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation.


Assuntos
Cor , Himenópteros/fisiologia , Aprendizagem , Memória , Animais
5.
Psychopharmacology (Berl) ; 232(14): 2429-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25716307

RESUMO

RATIONALE: While brain serotonin (5-HT) function is implicated in gene-by-environment interaction (GxE) impacting the vulnerability-resilience continuum in neuropsychiatric disorders, it remains elusive how the interplay of altered 5-HT synthesis and environmental stressors is linked to failure in emotion regulation. OBJECTIVE: Here, we investigated the effect of constitutively impaired 5-HT synthesis on behavioral and neuroendocrine responses to unpredictable chronic mild stress (CMS) using a mouse model of brain 5-HT deficiency resulting from targeted inactivation of the tryptophan hydroxylase-2 (Tph2) gene. RESULTS: Locomotor activity and anxiety- and depression-like behavior as well as conditioned fear responses were differentially affected by Tph2 genotype, sex, and CMS. Tph2 null mutants (Tph2(-/-)) displayed increased general metabolism, marginally reduced anxiety- and depression-like behavior but strikingly increased conditioned fear responses. Behavioral modifications were associated with sex-specific hypothalamic-pituitary-adrenocortical (HPA) system alterations as indicated by plasma corticosterone and fecal corticosterone metabolite concentrations. Tph2(-/-) males displayed increased impulsivity and high aggressiveness. Tph2(-/-) females displayed greater emotional reactivity to aversive conditions as reflected by changes in behaviors at baseline including increased freezing and decreased locomotion in novel environments. However, both Tph2(-/-) male and female mice were resilient to CMS-induced hyperlocomotion, while CMS intensified conditioned fear responses in a GxE-dependent manner. CONCLUSIONS: Our results indicate that 5-HT mediates behavioral responses to environmental adversity by facilitating the encoding of stress effects leading to increased vulnerability for negative emotionality.


Assuntos
Química Encefálica/genética , Emoções , Serotonina/biossíntese , Estresse Psicológico/metabolismo , Triptofano Hidroxilase/genética , Animais , Ansiedade/psicologia , Comportamento Animal , Peso Corporal , Doença Crônica , Depressão/psicologia , Medo , Feminino , Interação Gene-Ambiente , Sistema Hipotálamo-Hipofisário , Masculino , Camundongos , Camundongos Knockout , Atividade Motora , Sistemas Neurossecretores/fisiopatologia , Sistema Hipófise-Suprarrenal , Caracteres Sexuais
6.
PLoS One ; 7(8): e43157, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912815

RESUMO

Brain serotonin (5-HT) is implicated in a wide range of functions from basic physiological mechanisms to complex behaviors, including neuropsychiatric conditions, as well as in developmental processes. Increasing evidence links 5-HT signaling alterations during development to emotional dysregulation and psychopathology in adult age. To further analyze the importance of brain 5-HT in somatic and brain development and function, and more specifically differentiation and specification of the serotonergic system itself, we generated a mouse model with brain-specific 5-HT deficiency resulting from a genetically driven constitutive inactivation of neuronal tryptophan hydroxylase-2 (Tph2). Tph2 inactivation (Tph2-/-) resulted in brain 5-HT deficiency leading to growth retardation and persistent leanness, whereas a sex- and age-dependent increase in body weight was observed in Tph2+/- mice. The conserved expression pattern of the 5-HT neuron-specific markers (except Tph2 and 5-HT) demonstrates that brain 5-HT synthesis is not a prerequisite for the proliferation, differentiation and survival of raphe neurons subjected to the developmental program of serotonergic specification. Furthermore, although these neurons are unable to synthesize 5-HT from the precursor tryptophan, they still display electrophysiological properties characteristic of 5-HT neurons. Moreover, 5-HT deficiency induces an up-regulation of 5-HT(1A) and 5-HT(1B) receptors across brain regions as well as a reduction of norepinephrine concentrations accompanied by a reduced number of noradrenergic neurons. Together, our results characterize developmental, neurochemical, neurobiological and electrophysiological consequences of brain-specific 5-HT deficiency, reveal a dual dose-dependent role of 5-HT in body weight regulation and show that differentiation of serotonergic neuron phenotype is independent from endogenous 5-HT synthesis.


Assuntos
Encéfalo/metabolismo , Inativação Gênica/fisiologia , Crescimento e Desenvolvimento/fisiologia , Núcleos da Rafe/metabolismo , Serotonina/deficiência , Triptofano Hidroxilase/genética , Fatores Etários , Animais , Autorradiografia , Peso Corporal , Crescimento e Desenvolvimento/genética , Técnicas Histológicas , Ácido Hidroxi-Indolacético/metabolismo , Camundongos , Norepinefrina/metabolismo , Receptores de Serotonina/metabolismo , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA